Selasa, 12 Oktober 2010

Tugas Urkom

Konvensi bilangan decimal, biner, oktal, heksadesimal.
System bilangan
System bilangan merupakan tata aturan atau susunan dalam menentukan nilai suatu bilangan antara lain system decimal , biner ,hexa desimal, dan oktal
Konvensi bilangan decimal, biner, oktal, heksadesimal.
Bilangan desimal adalah bilangan yang menggunakan 10 angka mulai 0 sampai 9 berturut2. Setelah angka 9, maka angka berikutnya adalah 10, 11, 12 dan seterusnya. Bilangan desimal disebut juga bilangan berbasis 10. Contoh penulisan bilangan desimal : 1710. Ingat, desimal berbasis 10, maka angka 10-lah yang menjadi subscript pada penulisan bilangan desimal. Bilangan desimal
Bilangan desimal adalah bilangan yang memiliki basis 10
bilangan tersebut adalah 0.1.2.3.4.5.6.7.8.9 (r=10)

Bilangan biner adalah bilangan yang hanya menggunakan 2 angka, yaitu 0 dan 1. Bilangan biner juga disebut bilangan berbasis 2. Setiap bilangan pada bilangan biner disebut bit, dimana 1 byte = 8 bit. Contoh penulisan : 1101112
bilangan biner
bilangan biner adalah bilangan yang memiliki basis 2
bilangan tersebut adalah 0 dan 1 (r=2)

Bilangan oktal adalah bilangan berbasis 8, yang menggunakan angka 0 sampai 7. Contoh penulisan : 178
bilangan oktal adalah bilangan yang memiliki basis 8
bilangan tersebut adalah 0.1.2.3.4.5.6.7 (r=8)

Bilangan heksadesimal, atau bilangan heksa, atau bilangan basis 16, menggunakan 16 buah simbol, mulai dari 0 sampai 9, kemudian dilanjut dari A sampai F. Jadi, angka A sampai F merupakan simbol untuk 10 sampai 15. Contohpenulisan : C516
bilangan heksadesimal
bilangan hexa decimal adalah bilangan yang memiliki basis 16
bilangan itu adalah 0.1.2.3.4.5.6.7.8.9.A.B.C.D.E.F( r=16)


sumber:
www.google.com
wildan.eltika.net/konversi-bilangan-desimal-biner-oktal-dan-heksadesimal.


Rangkaian digital
Pada sistem bilangan biner nilai bilangan, sama dengan jumlah semua nilai digit yang ditentukan oleh digit itu sendiri dan posisi dalam bilangan. Bobot bilangan biner dinyatakan dengan 2 pangkat n, dimana n adalah posisi ke n dari digit di dalam bilangan (n = 1, 2, …). Posisi mulai di hitung dari digit yang yang berada paling kanan.
Sistem Bilangan Biner adalah suatu sistem atau cara menghitung bilangan dengan hanya menggunakan dua angka, yaitu ‘0′ dan ‘1′. Konversinya dalam bentuk tegangan di teknik digital level TTL (Transistor-transistor Logic) adalah (0 s/d 0,7) Volt untuk logika ‘0′ dan (3,5 s/d 5) Volt untuk logika ‘1′. Sedangkan untuk level IC CMOS tergantung dari besar dan range catu tegangan yang dipasang pada IC tersebut. Meskipun IC CMOS dapat dicatu sampai dengan 18 Volt, tetapi umumnya tetap dipasang dengan tegangan +5V, karena biasanya ia dirangkai bersamaan dengan IC TTL atau IC peripheral yang mempunyai level TTL (0 s/d 5) Volt.Dalam penulisan, penambahan bilangan nol di depan bilangan biner sering dilakukan untuk mempermudah operasi-operasi bilangan atau untuk menunjukkan berapa ‘bit’ struktur bilangan biner tersebut. Misalnya ‘0′ dapat ditulis ‘0000′ atau ‘00000000′. Penulisan ‘0000′ lebih memudahkan bila ‘0′ dioperasikan dengan bilangan biner yang berstruktur ‘XXXX’. Demikian pula ‘00000000′. Sekaligus hal ini menunjukkan berapa bit struktur bilangan biner tersebut. ‘0000′ berarti nilai ‘0′ dari 4 bit. ‘00000000′ berarti nilai ‘0′ dari 8 bit. (http://lecturer.eepis-its.edu)
Peraga seven segmen terdiri dari dua jenis yaitu common anode dan common cathode. Peraga seven segmen jenis common anode membutuhkan sinyal rendah sedangkan jenis common cathode membutuhaka sinyal yang tinggi untuk menyalakan segmen-segmennya. Secara umum peraga seven segmen memiliki 7 buah inputan yakni: a, b, c, d, e, f, dan g yang mana inputan inilah yang digunakan untuk menyalakan segmen-segmennya.

Sumber:
www.googel.com
wildan.eltika.net/rangkaian-digital-konversi-bilangan-biner-ke-desimal.htm




Sejarah Perkembangan dan Evolusi Komputer

Terbagi kepada dua zaman iaitu:

a) Sebelum tahun 1940
b) Selepas tahun 1940

Sebelum tahun 1940

Manusia menggunakan jari untuk mengenali dan membilang nombor satu hingga sepuluh. Selepas itu mereka mula mengenali nombor-nombor yang lebih besar tetapi masih menggunakan digit-digit asas dari 0 hingga 9. Ini mewujudkansistem nombor perpuluhan. Jari-jari digunakan untuk campur dan tolak nombor. Campur tolak nombor-nombor membantu mereka mengira dalam perniagaan barter. Apabila perniagaan semakin berkembang, jari-jari tidak dapat menampung keperluan pengiraan yang bertambah rumit.
Ahli-ahli perniagaan dari negeri China, Turki dan Yunani menggunakan abakus (sempua) untuk melakukan pengiraan asas campur, tolak dan darab bermula beribu tahun lepas. Abakus mengandungi batu-batu yang dipasang pada beberapa bar. Semua pengiraan dilakukan dengan mengubah kedudukan batu-batu itu.
Pada tahun 1617, John Napier mengemukakan sifir logaritma dan alat dipanggil tulang Napier (Napier's bones). Di samping pengiraan asas campur, tolak, darab dan bahagi, alat ini juga boleh mencari punca kuasa nombor. Tulang Napier diperbuat daripada tulang, kayu, logam dan kad. Pengiraan dilakukan dengan menyilang nombor-nombor pada segiempat dengan tangan.
Blaise Pascal mencipta mesin kira mekanikal pertama pada tahun 1642. Mesin ini beroperasi dengan menggerakkan gear pada roda. Pascal juga telah banyak menyumbang idea dalam bidang matematik dan ilmu kebarangkalian. Mesin kira Pascal telah dimajukan oleh William Leibnitz.
Pada tahun 1816, Charles Babbage membina 'the difference engine'. Mesin ini boleh menyelesaikan masalah pengiraan sifir matematik seperti logaritma secara mekanikal dengan tepat sehingga dua puluh digit. Mengikut draf yang dicadangkannya, mesin ini menggunakan kad tebuk sebagai input, boleh menyimpan kerja-kerja sebagai ingatan, melakukan pengiraan secara otomatik dan seterusnya mengeluarkan output dalam bentuk cetakan pada kertas. Konsep mesin ini memeranjatkan ahli-ahli sains pada masa itu kerana dianggap terlalu maju. Projek pembinaan ini walau bagaimanapun terbengkalai kerana ketiadaan sokongan teknikal yang dianggap terlalu maju pada masa tersebut. Babbage kemudian menumpukan perhatiannya kepada 'the analytical engine'. Kekurangan teknologi pada masa tersebut juga menyebabkan projek ini ditangguhkan. Walaupun gagal menyiapkan kedua-dua mesin, idea Babbage didapati amat berguna kepada pembentukan komputer moden pada hari ini. Semua komputer pada hari ini menggunakan model mesin seperti yang dicadangkan oleh Babbage, iaitu input, ingatan, pemprosesan dan output.
Kad tebuk pertama kali digunakan sebagai alat input dalam industri tekstil pada mesin penenunan otomatik ciptaan Joseph Jecquard pada tahun 1801. Mesin ini membaca data dengan mengenalisa kod-kod lubang pada kertas. Konsep lubang dan tiada lubang ini menandakan permulaan penggunaan nombor binari dalam pemprosesan data.
Herman Hollerith mempopularkan penggunaan kad tebuk sebagai alat input data. Mesinnya yang menggunakan kad tebuk berjaya memproses data untuk membanci penduduk Amerika Syarikat pada tahun 1887. Penggunaan kad tebuk kemudiannya diperluaskan kepada bidang-bidang seperti insuran, analisa jualan dan sistem akuan kereta.
Howard Aiken memperkenalkan penggunaan mesin elektromakenikal dipanggil Mark I pada tahun 1937. Satu bahagian mesin ini adalah elektronik dan sebahagian lagi mekanikal. Bentuknya besar dan berat serta mengandungi talian wayer yang panjang. Semua operasi di dalam komputer dijalankan oleh geganti elektromagnetik. Mark I boleh menyelesaikan masalah fungsi-fungsi trigonometri di samping pengiraan asas. Sungguhpun demikian ia masih dianggap lembab dan terhad oleh kerana jumlah storan ingatan yang sedikit.

Selepas tahun 1940.

Komputer-komputer selepas tahun 1940 adalah elektronik sepenuhnya. Di samping pengiraan yang kurang tepat mesin-mesin mekanikal sebelum ini adalah terlalu besar, menggunakan kos yang tinggi untuk mengendalikannya dan memerlukan terlalu banyak tenaga manusia untuk pengawasan.
Evolusi komputer selepas tahun 1940 boleh dikelaskan kepada lima generasi. Angka dalam kurungan menandakan tarikh anggaran.

Generasi Pertama (1940 – 1959)
Generasi Kedua (1959 -1964)
Generasi Ketiga (1964 - awal 1980)
Generasi Keempat (awal 88-an)
Generasi Kelima (masa depan)

Generasi Pertama
Komputer-komputer generasi pertama menggunakan tiub-tiub vakum untuk memproses dan menyimpan maklumat. Tiub vakum berukuran seperti mentol lampu kecil. Ia menjadi cepat panas dan mudah terbakar. Beribu-ribu tiub vakum diperlukan pada satu masa supaya setiap yang terbakar tidak menjejaskan operasi keseluruhan komputer. Komputer juga menggunakan tenaga elektrik yang banyak sehingga kadang-kadang menyebabkan gangguan pada kawasan sekelilingnya.
Komputer jenis ini adalah 100% elektronik, berfungsi untuk membantu ahli sains menyelesaikan masalah pengiraan trajektori dengan pantas dan tepat. Saiznya amat besar dan boleh dikelaskan sebagai kerangka utama (main frame) . Contoh komputer generasi pertama seperti ENIAC (Electronic Numerical Integrator And Calculator) dicipta oleh Dr John Mauchly dan Presper Eckert pada tahun 1946.
Perkembangan yang paling dihargai ialah permulaan komputer menyimpan ingatan di dalamnya, dikenali sebagai konsep aturcara tersimpan (stored program concept). Konsep yang dicadangkan oleh John von Neumann ini juga menitikberatkan penggunaan nombor binari untuk semua tugas pemprosesan dan storan.
Dr. Mauchly dan Eckert juga membantu pembinaan komputer EDVAC (Electronic Discrete Variable Automatic Computer) yang mengurangkan penggunaan tiub-tiub vakum. Pengiraan juga menjadi lebih cekap daripada ENIAC. EDVAC menggunakan sistem nombor binari dan konsep aturcara tersimpan.
Komputer EDSAC (Electronic Delay Storage Automatic Calculator) memperkenalkan penggunaan raksa (merkuri) dalam tiub untuk menyimpan ingatan. Cara ini didapati lebih ekonomi daripada tiub vakum tetapi pada amnya ia masih dianggap terlalu mahal. EDSAC dimajukan oleh Unviersiti Cambridge, England.
Pada tahun 1951 Dr. Mauchly dan Eckert mencipta UNIVAC I (Universal Automatic Calculator) komputer pertama yang digunakan untuk memproses data perniagaan. Turut menggunakan tiub raksa (merkuri) untuk storan. UNIVAC I digunakan oleh Biro Banci Penduduk Amerika Syarikat. Selepas kejayaan ENIVAC I banyak komputer-komputer berkaitan pengurusan dan perniagaan muncul selepasnya.

Genarasi Kedua
Komputer-komputer genarasi kedua menggunakan transistor dan diod untuk menggantikan tiub-tiub vakum, menjadikan saiz komputer lebih kecil dan murah. Daya ketahanan transistor didapati lebih baik kerana ia tidak mudah terbakar jika dibandingkan dengan tiub vakum. Cara baru menyimpan ingatan juga diperkenalkan iaitu teras magnetik. Teras magnetik menggunakan besi-besi halus yang dililit oleh litaran elektrik. Keupayaan pemprosesan dan saiz ingatan utama komputer juga bertambah. Ini menjadi komputer lebih pantas menjalankan tugasnya.
Kemunculan FORTRAN dan COBOL menandakan permulaan bahasa peringkat tinggi untuk menggantikan pengaturcaraan dalam bahasa mesin yang lebih sukar. Dengan yang demikian pengendalian komputer menjadi lebih mudah.
Era ini juga menandakan permulaan minikomputer iaitu yang kedua terbesar dalam famili komputer. Harganya lebih murah berbanding daripada kerangka utama. Komputer DEC PDP- 8 ialah minikomputer pertama dicipta pada tahun 1964 bagi memproses data-data perniagaan. Lain-lain komputer dalam generasi ini ialah IBM 7090 dan IBM 7094.

Generasi Ketiga
Penyelidikan mikroelektronik yang pesat berjaya menghaluskan transistor kepada saiz mikroskopik. Beberapa ratus ribu transistor ini dapat dipadatkan ke dalam kepingan segiempat silikon melalui proses yang dipanggil pengamiran skala besar (large scale integration, LSI), untuk menghasilkan litar terkamir atau lebih dikenali dengan panggilan cip.
Cip mula menggantikan transistor sebagai bahan logik komputer. Saiz cip yang kecil menjadikannya popular digunkan dalam kebanyakan alat elektronik dan harganya jauh lebih murah berbanding dengan komponen elektronik yang lain.
Jenis terkecil dalam famili komputer, mikrokomputer muncul dalam generasi ini. Mikrokomputer menjadi lebih cepat popular seperti jenama Apple II, IBM PC, NEC PC dan Sinclair. Mikrokomputer didapati amat praktikal kepada semua peringkat masyarakat kerana saiznya lebih kecil, harga yang murah dan kebolehannya berfungsi bersendirian. Sebuah mikrokomputer berupaya mengatasi komputer ENIAC dalam menjalankan sesuatu tugas.
Banyak bahasa pengaturcaraan muncul seperti BASIC, Pascal dan PL/1. Kebanyakan mikrokomputer dibekalkan dengan pentafsir bahasa secara bina-dalam di dalam cip ROM untuk membolehkan bahasa BASIC digunakan. Ini menjadikan BASIC bahasa pengaturcaraan yang paling popular pada mikrokomputer.



Generasi Keempat
Cip masih digunakan untuk pemprosesan dan menyimpan ingatan. Ia lebih maju, mengandungi sehingga beratus ribu komponen transistor didalamnya. Proses pembuatan cip teknologi tinggi ini dipanggil pengamiran skala amat besar (very large scale integration, VLSI). Pemprosesan dapat dilakukan dengan lebih pantas, sehingga berjuta bit sesaat. Ingatan utama komputer menjadi lebih besar sehingga menyebabkan storan skunder kurang penting. Teknologi cip yang maju ini mendekatkan jurang di antara mikrokomputer dengan minikomputer dan juga mikrokomputer dengan kerangka utama. Ini juga mewujudkan satu lagi kelas komputer dipanggil superkomputer, yang lebih pantas dan cekap berbanding kerangka utama.

Generasi Kelima
Generasi kelima dalam siri evolusi komputer mungkin belum wujud lagi dan ia merupakan komputer impian masa depan. Rekabentuk komputer generasi kelima adalah lebih kompleks. Ia dijangka mempunyai lebih banyak unit pemproses yang berfungsi serentak untuk menyelesaikan lebih daripada satu tugas dalam satu masa.
Komputer generasi ini juga mempunyai ingatan yang amat besar supaya membolehkannya menyelesaikan lebih banyak masalah yang kompleks. Unit pemprosesan pusat juga mungkin boleh berfungsi kepada paras seperti otak manusia. Komputer impian ini dijangka mempunyai kepandaian tersendiri, mengesan keadaan sekeliling melalui pengelihatan dan bijak mengambil sesuatu keputusan bebas daripada kawalan manusia. Sifat luar biasa ini disebut sebagai "artificial intelligence".


Sumber dari :
www.google.com
leocamp.tripod.com/SEJARAH.htm



Struktur dan bagian CPU, memory, input/output
Struktur komputer didefinisikan sebagai cara-cara dari tiap komponen saling terkait. Fungsi komputer didefinisikan sebagai operasi masing-masing komponen sebagai bagian dari struktur. Adapun fungsi dari masing-masing komponen dalam struktur di atas adalah sebagai berikut:
CPU (Central Processing Unit)
CPU merupakan otak sistem komputer, dan memiliki dua bagian fungsi operasional, yaitu: ALU (Arithmetical Logical Unit) sebagai pusat pengolah data, dan CU (Control Unit) sebagai pengontrol kerja komputer.
Bagian & Struktur CPU
KOMPONEN UTAMA CPU
- Arithmetic and Logic Unit (ALU)
- Control Unit (CU)
- Registers
- CPU Interconnections
Arithmetic and Logic Unit
Bertugas membentuk fungsi-fungsi pengolahan data komputer.
Arithmetic Logic Unit sering disebut dengan bahasa mesin (machine language) karena bagian ini mengerkjakan instruksi-instruksi bahasa mesin yang diberikan kepadanya.
Arithmetic Logic Unit terdiri dari dua bagian yaitu unit arithmetic dan unit logika Boolean yang masing-masing memiliki spesifikasi tugas tersendiri.
Control Unit [CU]
Bertugas mengontrol operasi CPU dan secara keseluruhan mengontrol komputer sehingga terjadi sinkronisasi kerja antar komponen dalam menjalankan fungsi-fungsi operasinya.
Termasuk dalam tanggung jawab unit kontrol adalah mengambil instruksi-intstruksi dari memori utama dan menentukan jenis instruksi tersebut.
Registers [Top Level Memory]
Media penyimpanan internal CPU yang digunakan saat proses pengolahan data.
Memori ini bersifat sementara, biasanya digunakan untuk menyimpan data saat diolah ataupun data untuk pengolahan selanjutnya.
CPU Interconnections
Sistem koneksi dan bus yang menghubungkan komponen internal dan bus-bus eksternal CPU.
Komponen internal CPU yaitu ALU, unit kontrol dan register-register.
Komponen eksternal CPU : sistem lainnya, seperti memori utama, piranti masukan dan keluaran.

Memori
Memori terbagi menjadi dua bagian yaitu memori internal dan memori eksternal. Memori internal berupa RAM (Random Access Memory) yang berfungsi untuk menyimpan program yang kita olah untuk sementara waktu, dan ROM (Read Only Memory) yaitu memori yang hanya bisa dibaca dan berguna sebagai penyedia informasi pada saat komputer pertama kali dinyalakan.

Jenis dan fungsi memory terbagi 4 yaitu:

Memory (Register, Cache memory, ROM, RAM )
a) Register merupakan jenis memori yang terdapat pada processor dan sebagai memori internal processor
b) Cache memory Merupakan memori yang dapat meningkatkan kecepatan komputer dan dikatakan sebagai memori perantara.
c) ROM ( Read Only Memory) Memori dalam CPU berfungsi membantu proses kerja komputer. ROM adalah salah satu memori, mempunyai sifat hanya dapat dibaca dan tidak bisa diubah dan mempunyai sifat yang permanen atau tetap (non volatile)
d)RAM ( Random Access Memory )Merupakan jenis jenis memori yang dapat dibaca, diisi, dan diubah menurut kebutuhan (volatile). RAM mempunyai sifat sementara

Input Device (Alat Masukan)
Adalah perangkat keras komputer yang berfungsi sebagai alat untuk memasukan data atau perintah ke dalam computer

Output Device (Alat Keluaran)
Adalah perangkat keras komputer yang berfungsi untuk menampilkan keluaran sebagai hasil pengolahan data. Keluaran dapat berupa hard-copy (ke kertas), soft-copy (ke monitor), ataupun berupa suara.

Struktur I/O
Untuk memulai mengoperasikan I/O, CPU memanggil register-register yang cocok untuk device controller. Kemudian device controller menjawab dengan mengisi register-register berupa tanggapan yang akan diberikan. Sebagai contoh, jika ada permintaan transfer data dari suatu device ke local buffer, dan transfer telah selesai didlakukan, maka device controller menginformasikan ke CPU bahwa pekerjaan tersebut telah selesai. Komunikasi ini akan menyebabkan terjadinya interrupt


Sumber:
www.googel.com
teknik-informatika.com/struktur-input-output/
seftianandriasandi.wordpress.com/2010/10/.../bagian-struktur-cpu/
www.g-excess.com/.../struktur-dan-fungsi-bagian-bagian-komputer.html
enengnurul.wordpress.com/.../struktur-dan-fungsi-komputer/

Tidak ada komentar:

Posting Komentar